摘要:综合以上得.------------------13分
网址:http://m.1010jiajiao.com/timu_id_151923[举报]
(09年山东省实验中学综合测试理)(本小题满分13分)已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)过点的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一
个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,
请说明理由.
查看习题详情和答案>>已知函数.()
(1)若在区间上单调递增,求实数的取值范围;
(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。
解:(1)在区间上单调递增,
则在区间上恒成立. …………3分
即,而当时,,故. …………5分
所以. …………6分
(2)令,定义域为.
在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.
∵ …………9分
① 若,令,得极值点,,
当,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;
当,即时,同理可知,在区间上递增,
有,也不合题意; …………11分
② 若,则有,此时在区间上恒有,从而在区间上是减函数;
要使在此区间上恒成立,只须满足,
由此求得的范围是. …………13分
综合①②可知,当时,函数的图象恒在直线下方.
查看习题详情和答案>>