网址:http://m.1010jiajiao.com/timu_id_151883[举报]
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有
≤
成立,求实数
的最小值;
(Ⅲ)证明(
).
【解析】(1)解:
的定义域为
由,得
当x变化时,,
的变化情况如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
极小值 |
|
因此,在
处取得最小值,故由题意
,所以
(2)解:当时,取
,有
,故
时不合题意.当
时,令
,即
令,得
①当时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故不合题意.
综上,k的最小值为.
(3)证明:当n=1时,不等式左边==右边,所以不等式成立.
当时,
在(2)中取,得
,
从而
所以有
综上,,
查看习题详情和答案>>
1 |
x |
2 |
y |
xy |
1 | ||
|
1 |
x |
2 |
y |
|
1 |
x |
2 |
y |
2 |
2 |
1 |
x |
2 |
y |
xy |
1 | ||
|
1 |
x |
2 |
y |
|
1 |
x |
2 |
y |
2 |
2 |
函数在同一个周期内,当
时,
取最大值1,当
时,
取最小值
。
(1)求函数的解析式
(2)函数的图象经过怎样的变换可得到
的图象?
(3)若函数满足方程
求在
内的所有实数根之和.
【解析】第一问中利用
又因
又
函数
第二问中,利用的图象向右平移
个单位得
的图象
再由图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
第三问中,利用三角函数的对称性,的周期为
在
内恰有3个周期,
并且方程在
内有6个实根且
同理,可得结论。
解:(1)
又因
又
函数
(2)的图象向右平移
个单位得
的图象
再由图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
(3)的周期为
在
内恰有3个周期,
并且方程在
内有6个实根且
同理,
故所有实数之和为
查看习题详情和答案>>
,
,
为常数,离心率为
的双曲线
:
上的动点
到两焦点的距离之和的最小值为
,抛物线
:
的焦点与双曲线
的一顶点重合。(Ⅰ)求抛物线
的方程;(Ⅱ)过直线
:
(
为负常数)上任意一点
向抛物线
引两条切线,切点分别为
、
,坐标原点
恒在以
为直径的圆内,求实数
的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程
第二问中,为
,
,
,
故直线的方程为
,即
,
所以,同理可得:
借助于根与系数的关系得到即,
是方程
的两个不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得双曲线焦距为,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程
(Ⅱ)设为
,
,
,
故直线的方程为
,即
,
所以,同理可得:
,
即,
是方程
的两个不同的根,所以
由已知易得,即
查看习题详情和答案>>