网址:http://m.1010jiajiao.com/timu_id_135368[举报]
设函数
(1)当时,求曲线处的切线方程;
(2)当时,求的极大值和极小值;
(3)若函数在区间上是增函数,求实数的取值范围.
【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。
解:(1)当……2分
∴
即为所求切线方程。………………4分
(2)当
令………………6分
∴递减,在(3,+)递增
∴的极大值为…………8分
(3)
①若上单调递增。∴满足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数的取值范围是
查看习题详情和答案>>
已知函数在处取得极值2.
⑴ 求函数的解析式;
⑵ 若函数在区间上是单调函数,求实数m的取值范围;
【解析】第一问中利用导数
又f(x)在x=1处取得极值2,所以,
所以
第二问中,
因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得
解:⑴ 求导,又f(x)在x=1处取得极值2,所以,即,所以…………6分
⑵ 因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得, …………9分
当f(x)在区间(m,2m+1)上单调递减,则有
得 …………12分
.综上所述,当时,f(x)在(m,2m+1)上单调递增,当时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是或
查看习题详情和答案>>