网址:http://m.1010jiajiao.com/timu_id_130255[举报]
1. 由函数知,当时,,且,则它的反函数过点(3,4),故选A.
2.∵,∴,则,即,.,选B.
3. 由平行四边形法则,,
∴,
又,
∴,当P为中点时,取得最小值.选B.
4. 设是椭圆的一个焦点,它是椭圆三个顶点,,构成的三角形的垂心(如图).由有,即,∴,得,解得,选A.
5. 设正方形边长为,,则,.在由正弦定理得,又在由余弦定理得,于是,,选C.
6. 在底面上的射影知,为斜线在平面上的射影,∵,由三垂线定理得,∵,所以直线与直线重合,选A.
7. 过A作抛物线的准线的垂线AA1交准线A1, 过B作椭圆的右准线的垂线交右准线于则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,
由可得两曲线的交点x=,xB∈(,2),
∴3+xB∈(,4),即△ANB周长取值范围是(,4),选B.
8. 先将3,5两个奇数排好,有种排法,再将4,6两个偶数插入3,5中,有种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为,选B.
把函数的图象按向量平移得到函数的图象.
(1)求函数的解析式; (2)若,证明:.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。
(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 证明:令,……6分
则……8分
,∴,∴在上单调递增.……10分
故,即
查看习题详情和答案>>
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
已知,函数
(1)当时,求函数在点(1,)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当时, 又 所以函数在点(1,)的切线方程为;(2)中令 有
对a分类讨论,和得到极值。(3)中,设,,依题意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时, 又
∴ 函数在点(1,)的切线方程为 --------4分
(Ⅱ)令 有
① 当即时
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
极大值 |
极小值 |
故的极大值是,极小值是
② 当即时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。
综上所述 时,极大值为,无极小值
时 极大值是,极小值是 ----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间上为增函数,则
依题意,只需,即
解得 或(舍去)
则正实数的取值范围是(,)
查看习题详情和答案>>