网址:http://m.1010jiajiao.com/timu_id_130229[举报]
1. 构造向量,,所以,.由数量积的性质,得,即的最大值为2.
2. ∵,令得,所以,当时,,当时,,所以当时,.
3.∵,∴,,又,∴,则,所以周期.作出在上的图象知:若,满足条件的()存在,且,关于直线对称,,关于直线对称,∴;若,满足条件的()存在,且,关于直线对称,,关于直线对称,
∴.
4. 不等式()表示的区域是如图所示的菱形的内部,
∵,
当,点到点的距离最大,此时的最大值为;
当,点到点的距离最大,此时的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为.
6. ∵,∴,
设,,则.
作出该不等式组表示的平面区域(图中的阴影部分).
令,则,它表示斜率为的一组平行直线,易知,当它经过点时,取得最小值.
解方程组,得,∴
已知抛物线C:与圆有一个公共点A,且在A处两曲线的切线与同一直线l
(I) 求r;
(II) 设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。
【解析】本试题考查了抛物线与圆的方程,以及两个曲线的公共点处的切线的运用,并在此基础上求解点到直线的距离。
【点评】该试题出题的角度不同于平常,因为涉及的是两个二次曲线的交点问题,并且要研究两曲线在公共点出的切线,把解析几何和导数的工具性结合起来,是该试题的创新处。另外对于在第二问中更是难度加大了,出现了另外的两条公共的切线,这样的问题对于我们以后的学习也是一个需要练习的方向。
查看习题详情和答案>>
△ABC中,内角A、B、C成等差数列,其对边a、b、c满足,求A。
【解析】本试题主要考查了解三角形的运用,
因为
【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题。试题整体上比较稳定,思路也比较容易想,先将利用等差数列得到角B,然后利用余弦定理求解运算得到A。
查看习题详情和答案>>