摘要:设正三棱柱的各棱长为.则..
网址:http://m.1010jiajiao.com/timu_id_130195[举报]
1. 构造向量,,所以,.由数量积的性质,得,即的最大值为2.
2. ∵,令得,所以,当时,,当时,,所以当时,.
3.∵,∴,,又,∴,则,所以周期.作出在上的图象知:若,满足条件的()存在,且,关于直线对称,,关于直线对称,∴;若,满足条件的()存在,且,关于直线对称,,关于直线对称,
∴.
4. 不等式()表示的区域是如图所示的菱形的内部,
∵,
当,点到点的距离最大,此时的最大值为;
当,点到点的距离最大,此时的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为.
6. ∵,∴,
设,,则.
作出该不等式组表示的平面区域(图中的阴影部分).
令,则,它表示斜率为的一组平行直线,易知,当它经过点时,取得最小值.
解方程组,得,∴
一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h= .
查看习题详情和答案>>
一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h=( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为、、,则( )
A. B. C. D.
查看习题详情和答案>>