摘要:解:(1)依题意设双曲线C的方程为:.点P代入得.
网址:http://m.1010jiajiao.com/timu_id_12661[举报]
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
查看习题详情和答案>>
已知平面直角坐标系中的点A(-1,0),B(3,2),求直线AB的方程的一个算法如下,请将其补充完整。
第一步,根据题意设直线AB的方程为y=kx+b
第二步,将A(-1,0),B(3,2)代入第一步所设的方程,得到-k+b=0①;3k+b=2②,
第三步,( )
第四步,把第三步所得结果代入第一步所设的方程,得到
第五步,将第四步所得结果整理,得到方程x-2y+1=0。
查看习题详情和答案>>
第一步,根据题意设直线AB的方程为y=kx+b
第二步,将A(-1,0),B(3,2)代入第一步所设的方程,得到-k+b=0①;3k+b=2②,
第三步,( )
第四步,把第三步所得结果代入第一步所设的方程,得到
第五步,将第四步所得结果整理,得到方程x-2y+1=0。
(2013•重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )