摘要:所以an=(nÎN).----------------- 4分
网址:http://m.1010jiajiao.com/timu_id_12638[举报]
|
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD
(请填出全部答案)
A、
C、
(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1)
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列(3)若将an,bn写成列向量形式,则存在矩阵A,使
|
|
|
|
|
①写出矩阵A=
|
|
P=
,Q=
|
|
P=
,Q=
; ③矩阵Cn中的唯一元素是
|
|
2n+2-4
2n+2-4
.计算过程如下:
已知Sn是等差数列{an}(nÎN*)的前n项和,且S6>S7>S5,有下列四个命题,假命题的是( )
A.公差d<0 B.在所有Sn<0中,S13最大
C.满足Sn>0的n的个数有11个 D.a6>a7
查看习题详情和答案>>
(本小题满分16分)
已知数列{an}的通项公式为an = (nÎN*).
⑴求数列{an}的最大项;
⑵设bn = ,试确定实常数p,使得{bn}为等比数列;
⑶设
,问:数列{an}中是否存在三项
,
,
,使数列
,
,
是等差数列?如果存在,求出这三项;如果不存在,说明理由.