网址:http://m.1010jiajiao.com/timu_id_12034[举报]
一、选择题:(本大题共10小题,每小题5分,共50分)
1 B
三、解答题:(本大题共6个解答题,满分76分,)
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐标得:
整理得:
即
所以动点P的轨迹是以点
(理)解:(I)当a=1时
或或
或
(II)原不等式
设有
当且仅当
即时
解得
若由方程组解得,可参考给分
(理)解:(Ⅰ)设 (a≠0),则
…… ①
…… ②
又∵有两等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)无极值
∴方程
得
或或
或
(II)原不等式
设有
当且仅当
即时
(理)解:以AN所在直线为x轴,AN的中垂
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐标得:
整理得:
即
所以动点P的轨迹是以点
…… ①
…… ②
又∵有两等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)无极值
∴方程
得
(理)解:(I)设 (1)
又故 (2)
由(1),(2)解得
(II)由向量与向量的夹角为得
由及A+B+C=知A+C=
则
由0<A<得,得
故的取值范围是
Sn+1=2an+1-3(n+1),两式相减并整理得:an+1=2an+3
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,进而可知an+3
所以,故数列{3+an}是首相为6,公比为2的等比数列,
所以3+an=6,即an=3()
(
南开中学模拟)有以下几个命题:A.曲线
按a=(-1,2)平移可得曲线;B.若
,则使x+y取得最大值和最小值的最优解都有无数多个;C.设
A、B为两个定点,m为常数,,则动点P的轨迹为椭圆;D.若椭圆的左、右焦点分别为
、,P是该椭圆上的任意一点,则点关于“的外角平分线”的对称点M的轨迹是圆.其中真命题的代号为
___________(按照原顺序写出所有真命题的代号). 查看习题详情和答案>>平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成,若在D上有无穷多个点(x,y)可使目标函数z=x+my(m<0)取得最大值,则m等于( )
A.-2 B.-1 C.1 D.4
查看习题详情和答案>>如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力 第一问要利用相似比得到结论。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)
第二问,
当且仅当
(3)令
∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.
∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).
查看习题详情和答案>>