网址:http://m.1010jiajiao.com/timu_id_12032[举报]
一、选择题:(本大题共10小题,每小题5分,共50分)
1 B
三、解答题:(本大题共6个解答题,满分76分,)
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐标得:
整理得:
即
所以动点P的轨迹是以点
(理)解:(I)当a=1时
或或
或
(II)原不等式
设有
当且仅当
即时
解得
若由方程组解得,可参考给分
(理)解:(Ⅰ)设 (a≠0),则
…… ①
…… ②
又∵有两等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)无极值
∴方程
得
或或
或
(II)原不等式
设有
当且仅当
即时
(理)解:以AN所在直线为x轴,AN的中垂
线为y轴建立平面直角坐标系如图所示,
则A(-4,0),N(4,0),设P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐标得:
整理得:
即
所以动点P的轨迹是以点
…… ①
…… ②
又∵有两等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)无极值
∴方程
得
(理)解:(I)设 (1)
又故 (2)
由(1),(2)解得
(II)由向量与向量的夹角为得
由及A+B+C=知A+C=
则
由0<A<得,得
故的取值范围是
Sn+1=2an+1-3(n+1),两式相减并整理得:an+1=2an+3
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,进而可知an+3
所以,故数列{3+an}是首相为6,公比为2的等比数列,
所以3+an=6,即an=3()
(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);
(2)f(x)只在x=-2处取得极大值;
(3)f(x)在x=-2与x=2处取得极大值;
(4)f(x)在x=0处取得极小值.
其中正确命题的个数为( )
已知函数f(x)是定义在R上的函数,如果函数f(x)在R上的导函数f′(x)的图象如图,则有以下几个命题:
(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);
(2)f(x)只在x=-2处取得极大值;
(3)f(x)在x=-2与x=2处取得极大值;
(4)f(x)在x=0处取得极小值.
其中正确命题的个数为 ( )
A.1 | B.2 |
C.3 | D.4 |
已知函数f(x)是定义在R上的函数,如果函数f(x)在R上的导函数f′(x)的图象如图,则有以下几个命题:
(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);
(2)f(x)只在x=-2处取得极大值;
(3)f(x)在x=-2与x=2处取得极大值;
(4)f(x)在x=0处取得极小值.
其中正确命题的个数为 ( )
A.1 B.2
C.3 D.4
查看习题详情和答案>>