网址:http://m.1010jiajiao.com/timu_id_11888[举报]
已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以
,
又由于
所求椭圆C的标准方程为
第二问中,
假设存在这样的直线,设
,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线
符合题意;
(ii)下面仅考虑情形:
由,得,
,得
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以
,
又由于
所求椭圆C的标准方程为
(Ⅱ) 假设存在这样的直线,设
,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线
符合题意;
(ii)下面仅考虑情形:
由,得,
,得
……② ……………………9分
则.
代入①式得,解得………………………………………12分
代入②式得,得
.
综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是
查看习题详情和答案>>
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当时,
,则
。
依题意得:,即
解得
第二问当时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,
,则
。
依题意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①当时,
,令
得
当变化时,
的变化情况如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
极小值 |
单调递增 |
极大值 |
|
又,
,
。∴
在
上的最大值为2.
②当时,
.当
时,
,
最大值为0;
当时,
在
上单调递增。∴
在
最大值为
。
综上,当时,即
时,
在区间
上的最大值为2;
当时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则
代入(*)式得:
即,而此方程无解,因此
。此时
,
代入(*)式得: 即
(**)
令
,则
∴在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
查看习题详情和答案>>