摘要:22.解:(1)设{an}的公差为d,{bn}的公比为q,则
网址:http://m.1010jiajiao.com/timu_id_117616[举报]
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.
【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1. 第二问中,,由第一问中知道,然后利用裂项求和得到Tn.
解: (Ⅰ) 设:{an}的公差为d,
因为解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因为……………8分
查看习题详情和答案>>
|