网址:http://m.1010jiajiao.com/timu_id_11694[举报]
一. 填空题(每题4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理
、文7; 7. 理
; 12.
(或
).
二.选择题(每题4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答题. 17.(本题满分12分)解:由已知得
(3分)
∴
, ∴
(6分)
∴
又
,即
,∴
(9分)
∴
的面积S=
.
(12分)
18.(本题满分12分)解:∵
,∴
(5分)
∵
,欲使
是纯虚数,
而
=
(7分)
∴
, 即
(11分)
∴当
时,
是纯虚数.
(12分)
19.(本题满分14分,第1小题满分9分,第2小题满分5分)
解:(1)依题意设
,则
,
(2分)
(4分) 而
,
∴
,即
, (6分) ∴
(7分)
从而
.
(9分)
(2)
平面
,
∴直线
到平面
的距离即点
到平面
的距离
(2分)
也就是
的斜边
上的高,为
.
(5分)
20.(本题满分14分,第1小题满分8分,第2小题满分6分)
解:(1)不正确.
(2分)
没有考虑到
还可以小于
.
(3分)
正确解答如下:
令
,则
,
当
时,
,即
(5分)
当
时,
,即
(7分)
∴
或
,即
既无最大值,也无最小值.
(8分)
(2)(理)对于函数
,令
①当
时,
有最小值,
,
(9分)
当
时,
,即
,当
时,即
∴
或
,即
既无最大值,也无最小值.
(10分)
②当
时,
有最小值,
,
此时,
,∴
,即
,
既无最大值,也无最小值 .(11分)
③当
时,
有最小值,
,即
(12分)
∴
,即
,
∴当
时,
有最大值
,没有最小值.
(13分)
∴当
时,
既无最大值,也无最小值。
当
时,
有最大值
,此时
;没有最小值.
(14分)
(文)∵
, ∴
(12分)
∴函数
的最大值为
(当
时)而无最小值. (14分)
21.(本满分16分,第1、2小题满分各4分,第3小题满分8分)
解:(1)
(4分)
(2)由
解得
(7分)
所以第
个月更换刀具.
(8分)
(3)第
个月产生的利润是:
(9分)
个月的总利润:
(11分)
个月的平均利润:
(13分)
由
且
在第7个月更换刀具,可使这7个月的平均利润
最大(13.21万元) (14分)此时刀具厚度为
(mm)
(16分)
22.(本题满分18分,第1、2小题满分各4分,第3小题满分10分)
解:(1)
(4分)
(2)各点的横坐标为:
(8分)
(3)过
作斜率为
的直线
交抛物线于另一点
,
(9分)
则一般性的结论可以是:
点
的相邻横坐标之和构成以
为首项和公比的等比数列(或:点
无限趋向于某一定点,且其横(纵)坐标之差成等比数列;或:
无限趋向于某一定点,且其横(纵)坐标之差成等比数列,等)(12分)
证明:设过点
作斜率为
的直线交抛物线于点
由
得
或
;
点
的横坐标为
,则
(14分)
于是
两式相减得:
(16分)


=

故点
无限逼近于点
同理
无限逼近于点
(18分)
一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
【解析】解:令矩形与墙垂直的两边为宽并设矩形宽为
,则长为![]()
所以矩形的面积
(
) (4分
=128 (8分)
当且仅当
时,即
时等号成立,此时
有最大值128
所以当矩形的长为
=16,宽为8时,
菜园面积最大,最大面积为128 (13分)答:当矩形的长为16米,宽为8米时。菜园面积最大,最大面积为128平方米(注:也可用二次函数模型解答)
查看习题详情和答案>>
材料:已知函数g(x)=
解:令u=-f(x)=-x2-x,则u=-(x+
当x=-
∴当x=-
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
查看习题详情和答案>>
材料:已知函数g(x)=-
| 1 |
| f(x) |
解:令u=-f(x)=-x2-x,则u=-(x+
| 1 |
| 2 |
| 1 |
| 4 |
当x=-
| 1 |
| 2 |
| 1 |
| 4 |
∴当x=-
| 1 |
| 2 |
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
| f(n) |
| 2n-1 |
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
已知函数
的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数
的值;
(Ⅱ)求
在区间
上的最大值;
(Ⅲ)对任意给定的正实数
,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当
时,
,则
。
依题意得:
,即
解得
第二问当
时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当
时,
,则
。
依题意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①当
时,
,令
得![]()
当
变化时,
的变化情况如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
极小值 |
单调递增 |
极大值 |
|
又
,
,
。∴
在
上的最大值为2.
②当
时,
.当
时,
,
最大值为0;
当
时,
在
上单调递增。∴
在
最大值为
。
综上,当
时,即
时,
在区间
上的最大值为2;
当
时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若
,则
代入(*)式得:![]()
即
,而此方程无解,因此
。此时
,
代入(*)式得:
即
(**)
令
,则![]()
∴
在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于
,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数
,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
查看习题详情和答案>>