摘要:解法一:(1) 方法一:作AH^面BCD于H.连DH.AB^BDÞHB^BD.又AD=.BD=1\AB==BC=AC \BD^DC又BD=CD.则BHCD是正方形.则DH^BC\AD^BC方法二:取BC的中点O.连AO.DO则有AO^BC.DO^BC.\BC^面AOD\BC^AD(2) 作BM^AC于M.作MN^AC交AD于N.则ÐBMN就是二面角B-AC-D的平面角.因为AB=AC=BC=\M是AC的中点.且MN¤¤CD.则BM=.MN=CD=.BN=AD=.由余弦定理可求得cosÐBMN=\ÐBMN=arccos(3) 设E是所求的点.作EF^CH于F.连FD.则EF¤¤AH.\EF^面BCD.ÐEDF就是ED与面BCD所成的角.则ÐEDF=30°.设EF=x.易得AH=HC=1.则CF=x.FD=.\tanÐEDF===解得x=.则CE=x=1故线段AC上存在E点.且CE=1时.ED与面BCD成30°角.解法二:此题也可用空间向量求解.解答略
网址:http://m.1010jiajiao.com/timu_id_11113[举报]
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)证明:易得,
于是
,所以
(2) ,
设平面PCD的法向量
,
则,即
.不防设
,可得
.可取平面PAC的法向量
于是
从而
.
所以二面角A-PC-D的正弦值为.
(3)设点E的坐标为(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)证明:由,可得
,又由
,
,故
.又
,所以
.
(2)如图,作于点H,连接DH.由
,
,可得
.
因此,从而
为二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值为
.
(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故
或其补角为异面直线BE与CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
查看习题详情和答案>>