摘要:解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3.- , ① 得 a1=S1= a1-×4+ 所以a1=2.再由①有 Sn-1=an-1-×2n+, n=2,3.4,-将①和②相减得: an=Sn-Sn-1= (an-an-1)-×(2n+1-2n),n=2,3, -整理得: an+2n=4(an-1+2n-1),n=2,3, - , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n-1= 4n, n=1,2,3, -, 因而an=4n-2n, n=1,2,3, -,(Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2) = ×(2n+1-1)(2n-1) Tn= = × = ×( - )所以, = - ) = ×( - ) <
网址:http://m.1010jiajiao.com/timu_id_10980[举报]
已知函数f(x)=1nx,g(x)=2-
(a为实数)
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的最小值;
(Ⅱ)若方程F(x)=f(x)-g(x)=0在区间[1,e2]上有解,求实数a的取值范围;
(Ⅲ)已知an=2f(2n+1)-f(n)-f(n+1),n∈N*,求证:数列{an}的前n项和Sn>
n+
.
查看习题详情和答案>>
a |
x |
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的最小值;
(Ⅱ)若方程F(x)=f(x)-g(x)=0在区间[1,e2]上有解,求实数a的取值范围;
(Ⅲ)已知an=2f(2n+1)-f(n)-f(n+1),n∈N*,求证:数列{an}的前n项和Sn>
3 |
4 |
1 |
60 |
(2013•海淀区二模)已知等差数列{an}的前n项和为 Sn
(I)若a1=1,S10=100,求{an}的通项公式;
(II)若Sn=n2-6n,解关于n的不等式Sn+an>2n.
查看习题详情和答案>>
(I)若a1=1,S10=100,求{an}的通项公式;
(II)若Sn=n2-6n,解关于n的不等式Sn+an>2n.
13、已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n,
则其前n项和Tn=
查看习题详情和答案>>
则其前n项和Tn=
(n2-2n+3)•2n+1-6
.