摘要:解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3.- , ① 得 a1=S1= a1-×4+ 所以a1=2.再由①有 Sn-1=an-1-×2n+, n=2,3.4,-将①和②相减得: an=Sn-Sn-1= (an-an-1)-×(2n+1-2n),n=2,3, -整理得: an+2n=4(an-1+2n-1),n=2,3, - , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n-1= 4n, n=1,2,3, -, 因而an=4n-2n, n=1,2,3, -,(Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2) = ×(2n+1-1)(2n-1) Tn= = × = ×( - )所以, = - ) = ×( - ) <

网址:http://m.1010jiajiao.com/timu_id_10980[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网