网址:http://m.1010jiajiao.com/timu_id_107233[举报]
1 |
2 |
(1)①试用含有a的式子表示b;②求f(x)的单调区间;
(2)对于函数图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l∥AB,则称AB存在“伴随切线”,当x0=
x1+x2 |
2 |
(本小题共14分)函数,,.
(1)①试用含有的式子表示;②求的单调区间;
(2)对于函数图像上的不同两点,,如果在函数图像上存在点(其中在与之间),使得点处的切线∥,则称存在“伴随切线”,当时,又称存在“中值伴随切线”。试问:在函数的图像上是否存在两点、,使得存在“中值伴随切线”?若存在,求出、的坐标;若不存在,说明理由。
查看习题详情和答案>>
(1)①试用含有的式子表示;②求的单调区间;
(2)对于函数图像上的不同两点,,如果在函数图像上存在点(其中在与之间),使得点处的切线∥,则称存在“伴随切线”,当时,又称存在“中值伴随切线”。试问:在函数的图像上是否存在两点、,使得存在“中值伴随切线”?若存在,求出、的坐标;若不存在,说明理由。
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
【解析】第一问当时,,则。
依题意得:,即 解得
第二问当时,,令得,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,,则。
依题意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①当时,,令得
当变化时,的变化情况如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
单调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上
查看习题详情和答案>>