网址:http://m.1010jiajiao.com/timu_id_105775[举报]
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
查看习题详情和答案>>
已知是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)记,
,证明
(
).
【解析】(1)设等差数列的公差为d,等比数列
的公比为q.
由,得
,
,
.
由条件,得方程组,解得
所以,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:数学归纳法)
① 当n=1时,,
,故等式成立.
② 假设当n=k时等式成立,即,则当n=k+1时,有:
即,因此n=k+1时等式也成立
由①和②,可知对任意,
成立.
查看习题详情和答案>>
设为实数,首项为
,公差为
的等差数列
的前n项和为
,满足
(1)若,求
及
;
(2)求d的取值范围.
【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用和已知的
,得到结论
第二问中,利用首项和公差表示,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。
解:(1)因为设为实数,首项为
,公差为
的等差数列
的前n项和为
,满足
所以
(2)因为
得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到
查看习题详情和答案>>