摘要:综上..只有一个公共点.
网址:http://m.1010jiajiao.com/timu_id_102170[举报]
(2013•山东)椭圆C:
+
=1(a>0,b>0)的左右焦点分别是F1,F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明
+
为定值,并求出这个定值.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
| ||
2 |
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明
1 |
kk1 |
1 |
kk2 |
给出下列五个命题:
①已知直线a,b和平面α,若a∥b,b∥α,则a∥α;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线
-
=1(a>0,b>0),则直线y=
x+m(m∈R)与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆
+y2=1交于P1P2两点,线段P1P2中点为P,设直线l斜率为k1(k≠0),直线OP的斜率为k2,则k1k2等于-
.
其中,正确命题的序号为
查看习题详情和答案>>
①已知直线a,b和平面α,若a∥b,b∥α,则a∥α;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线
x2 |
a2 |
y2 |
b2 |
b |
a |
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆
x2 |
2 |
1 |
2 |
其中,正确命题的序号为
④⑤
④⑤
.