网址:http://m.1010jiajiao.com/timu_id_102149[举报]
设函数,若为函数的一个极值点,则下列图象不可能为的图象是
【答案】D
【解析】设,∴,
又∴为的一个极值点,
∴,即,
∴,
当时,,即对称轴所在直线方程为;
当时,,即对称轴所在直线方程应大于1或小于-1.
查看习题详情和答案>>
如图,直线与抛物线交于两点,与轴相交于点,且.
(1)求证:点的坐标为;
(2)求证:;
(3)求的面积的最小值.
【解析】设出点M的坐标,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为,然后与抛物线方程联立消x,根据,即可建立关于的方程.求出的值.
(2)在第(1)问的基础上,证明:即可.
(3)先建立面积S关于m的函数关系式,根据建立即可,然后再考虑利用函数求最值的方法求最值.
查看习题详情和答案>>
设抛物线:(>0)的焦点为,准线为,为上一点,已知以为圆心,为半径的圆交于,两点.
(Ⅰ)若,的面积为,求的值及圆的方程;
(Ⅱ)若,,三点在同一条直线上,直线与平行,且与只有一个公共点,求坐标原点到,距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于轴的焦点为E,圆F的半径为,
则|FE|=,=,E是BD的中点,
(Ⅰ) ∵,∴=,|BD|=,
设A(,),根据抛物线定义得,|FA|=,
∵的面积为,∴===,解得=2,
∴F(0,1), FA|=, ∴圆F的方程为:;
(Ⅱ) 解析1∵,,三点在同一条直线上, ∴是圆的直径,,
由抛物线定义知,∴,∴的斜率为或-,
∴直线的方程为:,∴原点到直线的距离=,
设直线的方程为:,代入得,,
∵与只有一个公共点, ∴=,∴,
∴直线的方程为:,∴原点到直线的距离=,
∴坐标原点到,距离的比值为3.
解析2由对称性设,则
点关于点对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
查看习题详情和答案>>