网址:http://m.1010jiajiao.com/timu_id_101778[举报]
已知函数,(
),
(1)若曲线与曲线
在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当时,若函数
的单调区间,并求其在区间(-∞,-1)上的最大值。
【解析】(1),
∵曲线与曲线
在它们的交点(1,c)处具有公共切线
∴,
∴
(2)令,当
时,
令
,得
时,
的情况如下:
x |
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
所以函数的单调递增区间为
,
,单调递减区间为
当,即
时,函数
在区间
上单调递增,
在区间
上的最大值为
,
当且
,即
时,函数
在区间
内单调递增,在区间
上单调递减,
在区间
上的最大值为
当,即a>6时,函数
在区间
内单调递赠,在区间
内单调递减,在区间
上单调递增。又因为
所以在区间
上的最大值为
。
查看习题详情和答案>>
设函数.
(Ⅰ) 当时,求
的单调区间;
(Ⅱ) 若在
上的最大值为
,求
的值.
【解析】第一问中利用函数的定义域为(0,2),
.
当a=1时,所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),
.
(1)当时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
查看习题详情和答案>>
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间
上的最小值.
【解析】第一问定义域为真数大于零,得到.
.
令,则
,所以
或
,得到结论。
第二问中, (
).
.
因为0<a<2,所以,
.令
可得
.
对参数讨论的得到最值。
所以函数在
上为减函数,在
上为增函数.
(I)定义域为. ………………………1分
.
令,则
,所以
或
. ……………………3分
因为定义域为,所以
.
令,则
,所以
.
因为定义域为,所以
. ………………………5分
所以函数的单调递增区间为,
单调递减区间为.
………………………7分
(II) (
).
.
因为0<a<2,所以,
.令
可得
.…………9分
所以函数在
上为减函数,在
上为增函数.
①当,即
时,
在区间上,
在
上为减函数,在
上为增函数.
所以. ………………………10分
②当,即
时,
在区间
上为减函数.
所以.
综上所述,当时,
;
当时,
查看习题详情和答案>>