网址:http://m.1010jiajiao.com/timu3_id_535672[举报]
已知实数,且函数有最小值,则=__________。
已知函数(为实数).
(Ⅰ)当时,求的最小值;
(Ⅱ)若在上是单调函数,求的取值范围.
【解析】第一问中由题意可知:. ∵ ∴ ∴.
当时,; 当时,. 故.
第二问.
当时,,在上有,递增,符合题意;
令,则,∴或在上恒成立.转化后解决最值即可。
解:(Ⅰ) 由题意可知:. ∵ ∴ ∴.
(Ⅱ) .
令,则,∴或在上恒成立.∵二次函数的对称轴为,且
∴或或或
或. 综上
下列命题中:①函数的最小值是;②对于任意实数,有且时,, ,则时,;③如果是可导函数,则是函数在处取到极值的必要不充分条件;④已知存在实数使得不等式成立,则实数的取值范围是。其中正确的命题是___________.