摘要:19. 在四面体ABCD中.△BDC是等腰直角三角形.∠BDC=90°.BC=1.平面ABD与平面BDC垂直.且∠ABD= (1)证明:AB⊥CD, (2)求AC与BD所成的角, (3)求B到平面ACD的距离. 20090525
网址:http://m.1010jiajiao.com/timu3_id_534048[举报]
.(本
小题满分12分)
如图甲,在平面四边形ABCD中,已知![]()
,
,现将四边形ABCD沿BD折起,使平面ABD
平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.![]()
![]()
(1)求证:DC
平面ABC;
(2)设
,求三棱锥A-BFE的体积.
(本小题满分12分)
如图甲,在平面四边形ABCD中,已知![]()
,
,现将四边形ABCD沿BD折起,使平面ABD
平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
![]()
(Ⅰ)求证:DC
平面ABC;
(Ⅱ)设
,求三棱锥A-BFE的体积.
查看习题详情和答案>>
(本小题满分12分)如图甲,在平面四边形ABCD中,已知
![]()
,
,现将四边形ABCD沿BD折起,使平面ABD![]()
平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC
平面ABC;
(Ⅱ)设
,求三棱锥A-BFE的体积.
![]()
查看习题详情和答案>>