摘要:21. 解:(Ⅰ)点C的轨迹方程为..............................4' (Ⅱ).由方程组 消去x后.整理得 y2=-x. y=k(x+1) ky2+y-k=0. 设A(x1.y1).B(x2.y2).由韦达定理.............6' ∵A.B在抛物线y2=-x上. ∴y12=-x1.y22=-x2.y12·y22=x1x2. 设直线l与x轴交于点N.则N ∵S△OAB=S△OAN+S△OBN =|ON||y1|+|ON||y2| =|ON|·|y1-y2|. ∴S△OAB=·1· =.............................................8' ∵S△OAB=. ∴=.解得k=±...................................10' (Ⅲ) 故存在唯一的合乎题意的点M(0,0).............................14'
网址:http://m.1010jiajiao.com/timu3_id_533468[举报]
平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3)若点C满足
=a1
+a2012
,其中{an}为等差数列,且a1006+a1007=1,则点C的轨迹方程为( )
| OC |
| OA |
| OB |
查看习题详情和答案>>