摘要:22. 已知椭圆(.且)的右焦点为.离心率为.直线与轴.轴分别交于点A.B.M是直线与椭圆的一个公共点. (1)试用a.b.c表示点M的坐标. (2)若.圆与直线切于点.求此时椭圆的方程. 本资料由 提供!
网址:http://m.1010jiajiao.com/timu3_id_532830[举报]
.(本小题满分12分)已知椭圆的中心在原点,焦点在
轴上,一个顶点为
,且其右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为
,且过定点
的直线
,使
与椭圆交于两个不同的点
、
,且
?若存在,求出直线
的方程;若不存在,请说明理由.
查看习题详情和答案>>
(本小题满分12分)已知椭圆
(
)的右焦点为
,离心率为
.
(Ⅰ)若
,求椭圆的方程;
(Ⅱ)设直线
与椭圆相交于
,
两点,
分别为线段
的中点. 若坐标原点
在以
为直径的圆上,且
,求
的取值范围.
查看习题详情和答案>>
.(本小题满分12分)已知椭圆的中心在原点,焦点在
轴上,一个顶点为
,且其右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为
,且过定点
的直线
,使
与椭圆交于两个不同的点
、
,且
?若存在,求出直线
的方程;若不存在,请说明理由.
(1)求椭圆的方程;
(2)是否存在斜率为