摘要: 在解决问题:“证明数集没有最小数 时.可用反证法证明. 假设是中的最小数.则取.可得:.与假设中“是中的最小数 矛盾! 那么对于问题:“证明数集没有最大数 .也可以用反证法证明.我们可以假设是中的最大数.则可以找到 (用.表示).由此可知..这与假设矛盾!所以数集没有最大数.
网址:http://m.1010jiajiao.com/timu3_id_532508[举报]
在解决问题:“证明数集
没有最小数”时,可用反证法证明.
假设
是
中的最小数,则取
,可得:
,与假设中“
是
中的最小数”矛盾! 那么对于问题:“证明数集
没有最大数”,也可以用反证法证明.我们可以假设
是
中的最大数,则可以找到
▲ (用
,
表示),由此可知
,
,这与假设矛盾!所以数集
没有最大数.
查看习题详情和答案>>
在解决问题:“证明数集
没有最小数”时,可用反证法证明.
假设
是
中的最小数,则取
,可得:
,与假设中“
是
中的最小数”矛盾!那么对于问题:“证明数集
没有最大数”,也可以用反证法证明.我们可以假设
是
中的最大数,则可以找到
▲ (用
,
表示),由此可知
,
,这与假设矛盾!所以数集
没有最大数.
在解决问题:“证明数集
没有最小数”时,可用反证法证明.
假设
是
中的最小数,则取
,可得:
,与假设中“
是
中的最小数”矛盾!那么对于问题:“证明数集
没有最大数”,也可以用反证法证明.我们可以假设
是
中的最大数,则可以找到
▲ (用
,
表示),由此可知
,
,这与假设矛盾!所以数集
没有最大数.
假设