摘要:20. 如图.已知双曲线.其右准线交x轴于点A.双曲线虚轴的下端点为B.过双曲线的右焦点F(c.0)作垂直于x轴的直线交双曲线于点P.直线AB交PF于点D.且点D满足(O为原点). (1) 求双曲线的离心率, (2) 若a = 2.过点B的直线l交双曲线于M.N两点.问在y轴上是否存在定点C使为常数?若存在.求出C点的坐标,若不存在.请说明理由.
网址:http://m.1010jiajiao.com/timu3_id_532391[举报]
(本小题满分12分)
已知双曲线C的方程为
,离心率
,顶点到渐近线的距离为
。
(I)求双曲线C的方程;
(II)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若
,求
面积的取值范围。
![]()
(本小题满分12分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
(本小题满分12分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.