摘要:解析:显然S1是正确的.假设后三个数均未算错.则a1=8.a2=12.a3=16.a4=29.可知a22≠a1a3.故S2.S3中必有一个数算错了.若S2算错了.则a4=29=a1q3..显然S3=36≠8(1+q+q2).矛盾.只可能是S3算错了.此时由a2=12得.a3=18.a4=27.S4=S2+18+27=65.满足题设.
网址:http://m.1010jiajiao.com/timu3_id_531379[举报]
某同学回答“用数学归纳法证明
<n+1(n∈N)”的过程如下:
证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有
<k+1,那么当n=k+1时,
=(k+1)+1,所以当n=k+1时命题是正确的,由(1)(2)可知对于n∈N,命题都是正确的.以上证法是错误的,错误在于( )
A.当n=1时,验证过程不具体
B.归纳假设的写法不正确
C.从k到k+1的推理不严密
D.从k到k+1的推理过程没有使用归纳假设
查看习题详情和答案>>
某同学回答“用数学归纳法证明
<n+1(n∈N)”的过程如下:
证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有
<k+1,那么当n=k+1时,
(k+1)+1,所以当n=k+1时命题是正确的,由(1)、(2)可知对于(n∈N),命题都是正确的.以上证法是错误的,错误在于( )
A.当n=1时,验证过程不具体
B.归纳假设的写法不正确
C.从k到k+1的推理不严密
D.从k到k+1的推理过程没有使用归纳假设
查看习题详情和答案>>(2010•福建模拟)考察等式:
+
+…+
=
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
,
所以
+
+…+
=
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号
查看习题详情和答案>>
| C | 0 m |
| C | r n-m |
| C | 1 m |
| C | r-1 n-m |
| C | r m |
| C | 0 n-m |
| C | r n |
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
| ||||
|
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
| ||||||||||||
|
所以
| C | 0 m |
| C | r n-m |
| C | 1 m |
| C | r-1 n-m |
| C | r m |
| C | 0 n-m |
| C | r n |
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号
①③
①③
.