摘要:20. 已知函数 (.都是常数.).且当 和时.函数 取得极值. (1)求函数的解析式, (2)若曲线与有两个不同的交点.求实数的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_529951[举报]
(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M;
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设A、B是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.
(1)求函数y=g(x)的解析式及定义域M;
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设A、B是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.
(本小题满分12分)已知
,设函数
,
.
(Ⅰ)求函数
的最大值;
(Ⅱ)若
是自然对数的底数,当
时,是否存在常数
、
,使得不等式
对于任意的正实数
都成立?若存在,求出
、
的值,若不存在,请说明理由.
查看习题详情和答案>>