摘要:22. 在直角坐标平面上有一点列P1()..-..-对每 个正整数.点位于函数的图象上.且的横坐标构成以为首项.为公差的等差数列. (1)求点的坐标, (2)设抛物线列.-中的每一条的对称轴都垂直于轴.第条抛物 线的顶点为且过点.记过点且与抛物线只有一个交点的直线的 斜率为.求证:. (3)设..等差数列的任一 项.其中是中的最大数..求的通项公式.
网址:http://m.1010jiajiao.com/timu3_id_529086[举报]
(本小题满分14分)
在平面直角坐标系
中,已知圆心在第二象限、半径为
的圆
与直线
相切
于坐标原点
.椭圆
与圆
的一个交点到椭圆两焦点的距离之和为
.
(1)求圆
的方程;
(2)试探究圆
上是否存在异于原点的点
,使
到椭圆右焦点F的距离等于
![]()
线段
的长.若存在,请求出点
的坐标;若不存在,请说明理由.
(本小题满分14分)
在平面直角坐标系
中,已知圆心在第二象限、半径为
的圆
与直线
相切
于坐标原点
.椭圆
与圆
的一个交点到椭圆两焦点的距离之和为
.
(1)求圆
的方程;
(2)试探究圆
上是否存在异于原点的点
,使
到椭圆右焦点F的距离等于
![]()
线段
的长.若存在,请求出点
的坐标;若不存在,请说明理由.
(本小题满分14分)在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且三角形POA的三边所在直线的斜率满足kOP+kOA=kPA.
( I)求点P的轨迹C的方程;
(Ⅱ)若Q是轨迹C上异于点P的一个点,且
,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
![]()
查看习题详情和答案>>