摘要:21.在数列.已知 (1)记.求证:数列是等差数列, (2)求数列的通项公式, (3)对于任意给定的正整数k.是否存在.使得若存在.求出m的值,若不存在.请说明理由. 22.如图.已知椭圆的离心率为e.点F为其下焦点.点O为坐标原点.过F的直线与椭圆C相交于P.Q两点.且满足: (1)试用a表示, (2)求e的最大值, (3)若取值范围,
网址:http://m.1010jiajiao.com/timu3_id_525933[举报]
(本小题满分12分)
在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是
.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率;
(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
查看习题详情和答案>>.(本小题满分12分)
某科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关,同时决定对攻关期限内就攻克技术难题的小组给予奖励.已知此技术难题在攻关期限内被甲小组攻克的概率为
,被乙小组攻克的概率为
.
(1)设
为攻关期满时获奖的攻关小组数,求
的分布列及
;
(2)设
为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数
在定义域内单调递增”为事件
,求事件
的概率.