摘要:重视求曲线的方程或曲线的轨迹.此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法.直接法.待定系数法.相关点法.参数法等.
网址:http://m.1010jiajiao.com/timu3_id_522329[举报]
已知点
(
),过点
作抛物线
的切线,切点分别为
、
(其中
).
(Ⅰ)若
,求
与
的值;
(Ⅱ)在(Ⅰ)的条件下,若以点
为圆心的圆
与直线
相切,求圆
的方程;
(Ⅲ)若直线
的方程是
,且以点
为圆心的圆
与直线
相切,
求圆
面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线
与曲线
相切,且过点
,∴
,利用求根公式得到结论先求直线
的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
,借助于函数的性质圆
面积的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直线
与曲线
相切,且过点
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,则
的斜率
,
∴直线
的方程为:
,又
,
∴
,即
. -----------------7分
∵点
到直线
的距离即为圆
的半径,即
,--------------8分
故圆
的面积为
. --------------------9分
(Ⅲ)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
, ………10分
∴![]()
,
当且仅当
,即
,
时取等号.
故圆
面积的最小值
.
查看习题详情和答案>>
已知抛物线D的顶点是椭圆Q:
+
=1的中心O,焦点与椭圆Q的右焦点重合,点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线D上的两个动点,且|
+
|=|
-
|(Ⅰ)求抛物线D的方程及y1y2的值;
(Ⅱ)求线段AB中点轨迹E的方程;
(Ⅲ)求直线y=
x与曲线E的最近距离.
查看习题详情和答案>>
| x2 |
| 4 |
| y2 |
| 3 |
| OA |
| OB |
| OA |
| OB |
(Ⅱ)求线段AB中点轨迹E的方程;
(Ⅲ)求直线y=
| 1 |
| 2 |
点M是曲线C上任意一点,它到F(4,0)的距离比它到直线x+2=0的距离大2,且P(2m,m)(m>0),A(x1,y1),B(x2,y2)均在曲线C上.
(1)写出该曲线C的方程及 m的值;
(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.
查看习题详情和答案>>
(1)写出该曲线C的方程及 m的值;
(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.