摘要:21.设椭圆+ = 1的左焦点为F.上顶点为A.过A做直线AF l分别交椭圆和轴正半轴于P.Q两点.若分AQ所成的比为8∶5. (1)求椭圆的离心率, (2)若过A.Q.F三点的圆恰好与直线+ + 3 = 0相切.求椭圆方程.
网址:http://m.1010jiajiao.com/timu3_id_521512[举报]
已知椭圆C1:
+
=1(a>b>0)的离心率为
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足
•
=0,求|
|的取值范围.
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足
| QR |
| RS |
| QS |
已知椭圆C1:
+
=1(a>b>0)的离心率为
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2
垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程:
(3)C2与x轴交于点Q,不同的两点R,S在C2上,且满足
•
=0,若R、S到x轴的距离分别为d1和d2,求d1+d2的最小值.
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2
垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程:
(3)C2与x轴交于点Q,不同的两点R,S在C2上,且满足
. |
| QR |
. |
| QS |
已知椭圆C1:
+
=1(a>b>0)的离心率为
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
时,直线l1上是否存在点M,使AM⊥BM?若存在,求出M的坐标,若不存在,说明理由.
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
| 1 |
| 2 |