摘要:已知直线为曲线在点(1,0)处的切线, 为该曲线另一条切线,且,则直线的方程为
网址:http://m.1010jiajiao.com/timu3_id_519468[举报]
已知向量
=(x2,y-cx),
=(1,x+b),
∥
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
和c的值;
(Ⅱ)若函数f(x)在[
,a2]上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围. 查看习题详情和答案>>
| m |
| n |
| m |
| n |
(Ⅰ)求
| b |
| a |
(Ⅱ)若函数f(x)在[
| a |
| 2 |
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围. 查看习题详情和答案>>
已知函数f(x)=lnx,g(x)=
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函数y=g(x)的零点至少有一个在原点右侧,求实数a的范围.
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
;②曲线C在点M处的切线平行于直线AB,则称函数f(x)=存在“中值相依切线”.
试问:函数G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.
查看习题详情和答案>>
| 1 |
| 2 |
(Ⅰ)已知函数y=g(x)的零点至少有一个在原点右侧,求实数a的范围.
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
| x1+x2 |
| 2 |
试问:函数G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.
已知下列四个命题:
①若函数y=f(x)在x°处的导数f′(x0)=0,则它在x=x0处有极值;
②若不论m为何值,直线y=mx+1均与曲线
+
=1有公共点,则b≥1;
③若x、y、z∈R+,a=x+
,b=y+
,c=z+
,则a、b、c中至少有一个不小于2;
④若命题“存在x∈R,使得|x-a|+|x+1|≤2”是假命题,则|a+1|>2;
以上四个命题正确的是
查看习题详情和答案>>
①若函数y=f(x)在x°处的导数f′(x0)=0,则它在x=x0处有极值;
②若不论m为何值,直线y=mx+1均与曲线
| x2 |
| 4 |
| y2 |
| b2 |
③若x、y、z∈R+,a=x+
| 1 |
| y |
| 1 |
| z |
| 1 |
| x |
④若命题“存在x∈R,使得|x-a|+|x+1|≤2”是假命题,则|a+1|>2;
以上四个命题正确的是
③④
③④
(填入相应序号)