摘要: D 2. A 3. 4. 5.解:有两种可能:将原1件次品仍鉴定为次品.原3件正品中1件错误地鉴定为次品;将原1件次品错误地鉴定为正品.原3件正品中的2件错误地鉴定为次品. 概率为 P==0.1998
网址:http://m.1010jiajiao.com/timu3_id_517448[举报]
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f″(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有的同学发现“任何三次函数都有‘拐点’;任何三次函数都有对称中心;且对称中心就是‘拐点’”.请你根据这一发现判断下列命题:
(1)任意三次函数都关于点(-
,f(-
))对称;
(2)存在三次函数,f'(x)=0有实数解x0,(x0,f(x0))点为函数y=f(x)的对称中心;
(3)存在三次函数有两个及两个以上的对称中心;
(4)若函数g(x)=
x3-
x2-
,则g(
)+g(
)+g(
)+…+g(
)=-1006
其中正确命题的序号为( )
(1)任意三次函数都关于点(-
| b |
| 3a |
| b |
| 3a |
(2)存在三次函数,f'(x)=0有实数解x0,(x0,f(x0))点为函数y=f(x)的对称中心;
(3)存在三次函数有两个及两个以上的对称中心;
(4)若函数g(x)=
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 12 |
| 1 |
| 2013 |
| 2 |
| 2013 |
| 3 |
| 2013 |
| 2012 |
| 2013 |
其中正确命题的序号为( )
查看习题详情和答案>>