摘要:21. 如图.已知圆过定点.圆心在抛物线上运动.为圆在轴上所截得的弦. (Ⅰ)证明:当点运动时.为定值. (Ⅱ)当是与的等差中项时.试判断抛物线的准线与圆的位置关系.并说明理由.
网址:http://m.1010jiajiao.com/timu3_id_513911[举报]
(本小题满分14分)
如图,已知椭圆
的左、右焦点分别为
短轴两的端点为A、B,且四边形
是边长为2的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若C、D分别是椭圆长轴的左、右端点,动点M满足MD
连结
交椭圆于点
证明:
为定值;
(Ⅲ)在(Ⅱ)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,说明理由.
(本小题满分14分)如图所示,已知以点
为圆心的圆与直线
相切.过点
的动直线
与圆
相交于
,
两点,
是
的中点,直线
与
相交于点
.![]()
(1)求圆
的方程;
(2)当
时,求直线
的方程.
(3)
是否为定值?如果是,求出其定值;如果不是,请说明理由.
(本小题满分14分)如图所示,已知以点
为圆心的圆与直线
相切.过点
的动直线
与圆
相交于
,
两点,
是
的中点,直线
与
相交于点
.
![]()
(1)求圆
的方程;
(2)当
时,求直线
的方程.
(3)
是否为定值?如果是,求出其定值;如果不是,请说明理由.
查看习题详情和答案>>