摘要:21.平面直角坐标系中.已知(c为常数.c>0). 的最小值为1. (a为常数.a>c,tR).动点P同时满足下列三个条件: ① ②. ③动点P的轨迹C经过点B (1)求曲线C的方程, (2)是否存在方向向量为的直线l.l与C相交于M.N两点.使的夹角为60°?若存在.求出k的值.并写出l的方程,若不存在.请说明理由.
网址:http://m.1010jiajiao.com/timu3_id_513518[举报]
在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设f(x)=
•
.
(1)若a=
,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为
=(-1,1)的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
,0)对称,且在x=
处f(x)取得最小值”.
查看习题详情和答案>>
| OA |
| OB |
(1)若a=
| 3 |
(2)若点A是过点(-1,1)且法向量为
| n |
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
| π |
| 3 |
| π |
| 6 |