摘要:16.若已知椭圆的一条准线与抛物线的准线重合.则 .
网址:http://m.1010jiajiao.com/timu3_id_513229[举报]
已知椭圆
的一条准线为
,且与抛物线
有相同的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点
是该椭圆的左准线与
轴的交点,是否存在过点
的直线
与椭圆相交于
、
两点,且线段
的中点恰好落到由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界)?若存在,求出直线
的斜率的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
已知椭圆的焦点为F1(-1,0)、F2(1,0),直线x=4是它的一条准线.
(1)求椭圆的方程;
(2)设A1、A2分别是椭圆的左顶点和右顶点,P是椭圆上满足|PA1|-|PA2|=2的一点,求tan∠A1PA2的值;
(3)若过点(1,0)的直线与以原点为顶点、A2为焦点的抛物线相交于点M、N,求MN中点Q的轨迹方程. 查看习题详情和答案>>
(1)求椭圆的方程;
(2)设A1、A2分别是椭圆的左顶点和右顶点,P是椭圆上满足|PA1|-|PA2|=2的一点,求tan∠A1PA2的值;
(3)若过点(1,0)的直线与以原点为顶点、A2为焦点的抛物线相交于点M、N,求MN中点Q的轨迹方程. 查看习题详情和答案>>
已知椭圆的焦点为F1(-1,0)、F2(1,0),直线x=4是它的一条准线.
(1)求椭圆的方程;
(2)设A1、A2分别是椭圆的左顶点和右顶点,P是椭圆上满足|PA1|-|PA2|=2的一点,求tan∠A1PA2的值;
(3)若过点(1,0)的直线与以原点为顶点、A2为焦点的抛物线相交于点M、N,求MN中点Q的轨迹方程.
查看习题详情和答案>>
(1)求椭圆的方程;
(2)设A1、A2分别是椭圆的左顶点和右顶点,P是椭圆上满足|PA1|-|PA2|=2的一点,求tan∠A1PA2的值;
(3)若过点(1,0)的直线与以原点为顶点、A2为焦点的抛物线相交于点M、N,求MN中点Q的轨迹方程.