摘要:设椭圆的长轴两端点为M.N.异于M.N的点P在椭圆上.则PM与PN的斜率之积为( ) A. B. C. D.
网址:http://m.1010jiajiao.com/timu3_id_512455[举报]
(2009•河东区二模)已知椭圆
+
=1(a>b>0).
(1)设F是椭圆的一个焦点,M椭圆上的任意一点,|MF|的最大值与最小值的算术平均等于4,椭圆的顶点A与N(-2,0)关于直线x+y=0对称,求此椭圆方程;
(2)设点P是椭圆
+
=1上异于长轴端点的任意一点,F1、F2为两焦点,记∠F1PF2=θ,求证|PF1|•|PF2|=
.
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
(1)设F是椭圆的一个焦点,M椭圆上的任意一点,|MF|的最大值与最小值的算术平均等于4,椭圆的顶点A与N(-2,0)关于直线x+y=0对称,求此椭圆方程;
(2)设点P是椭圆
| x2 |
| a2 |
| y2 |
| b2 |
| 2b2 |
| 1+cosθ |
有一幅椭圆型彗星轨道图,长4 cm,高
,如下图,已知O为椭圆中心,A1,A2是长轴两端点,太阳位于椭圆的左焦点F处.
(Ⅰ)建立适当的坐标系,写出椭圆方程,并求出当彗星运行到太阳正上方时二者在图上的距离;
(Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,设P是l上异于D点的任意一点,直线A1P,A2P分别交椭圆于M、N(不同于A1,A2)两点,问点A2能否在以MN为直径的圆上?试说明理由.
(本小题满分12分)
有一幅椭圆型彗星轨道图,长4cm,高
,如下图,
已知O为椭圆中心,A1,A2是长轴两端点,
|
(Ⅰ)建立适当的坐标系,写出椭圆方程,
并求出当彗星运行到太阳正上方时二者在图上的距离;
(Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,
设P是l上异于D点的任意一点,直线A1P,A2P分别
交椭圆于M、N(不同于A1,A2)两点,问点A2能否
在以MN为直径的圆上?试说明理由.
查看习题详情和答案>>