摘要:设.是两个不等的正数.且.求证:.
网址:http://m.1010jiajiao.com/timu3_id_512098[举报]
已知各项均为正数的两个无穷数列{an}、{bn}满足anbn+1+an+1bn=2nan+1(n∈N*).
(Ⅰ)当数列{an}是常数列(各项都相等的数列),且b1=
时,求数列{bn}的通项公式;
(Ⅱ)设{an}、{bn}都是公差不为0的等差数列,求证:数列{an}有无穷多个,而数列{bn}惟一确定;
(Ⅲ)设an+1=
(n∈N*),Sn=
bi,求证:2<
<6.
查看习题详情和答案>>
(Ⅰ)当数列{an}是常数列(各项都相等的数列),且b1=
| 1 |
| 2 |
(Ⅱ)设{an}、{bn}都是公差不为0的等差数列,求证:数列{an}有无穷多个,而数列{bn}惟一确定;
(Ⅲ)设an+1=
| 2an2+an |
| an+1 |
| 2n |
| i=1 |
| Sn |
| n2 |
已知各项均为正数的两个无穷数列{an}、{bn}满足anbn+1+an+1bn=2nan+1(n∈N*).
(Ⅰ)当数列{an}是常数列(各项都相等的数列),且b1=
时,求数列{bn}的通项公式;
(Ⅱ)设{an}、{bn}都是公差不为0的等差数列,求证:数列{an}有无穷多个,而数列{bn}惟一确定;
(Ⅲ)设an+1=
,Sn=
,求证:2<
<6.
查看习题详情和答案>>
(Ⅰ)当数列{an}是常数列(各项都相等的数列),且b1=
(Ⅱ)设{an}、{bn}都是公差不为0的等差数列,求证:数列{an}有无穷多个,而数列{bn}惟一确定;
(Ⅲ)设an+1=
查看习题详情和答案>>
本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分
(1)选修4-2:矩阵与变换
变换
是将平面上每个点
的横坐标乘
,纵坐标乘
,变到点
.
(Ⅰ)求变换
的矩阵;
(Ⅱ)圆
在变换
的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线
的极坐标方程为:
,直线
的参数方程为:
(
为参数).
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)直线
上有一定点
,曲线
与
交于M,N两点,求
的值.
(3)选修4-5:不等式选讲
已知
为实数,且![]()
(Ⅰ)求证:![]()
(Ⅱ)求实数m的取值范围.
查看习题详情和答案>>