摘要:在平面直角坐标系中A(0.).B(0.)且.在轴的正半轴上求点C.使∠ACB最大.则C点坐标 .
网址:http://m.1010jiajiao.com/timu3_id_511897[举报]
在平面直角坐标系中,已知向量
=(x,y-4),
=(kx,y+4)(k∈R),
⊥
,动点M(x,y)的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当k=1时,已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部
的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?
若存在,求出点Q的坐标;若不存在,说明理由. 查看习题详情和答案>>
| a |
| b |
| a |
| b |
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当k=1时,已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部
的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?
若存在,求出点Q的坐标;若不存在,说明理由. 查看习题详情和答案>>
在平面直角坐标系中,O为坐标原点,已知两点M (1,-3)、N(5,1),若点C满足
=t
+(1-t)
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(1)求证:
⊥
;
(2)在x轴上是否存在一点P (m,0),使得过点P任作抛物线的一条弦,并以该弦为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由. 查看习题详情和答案>>
| OC |
| OM |
| ON |
(1)求证:
| OA |
| OB |
(2)在x轴上是否存在一点P (m,0),使得过点P任作抛物线的一条弦,并以该弦为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由. 查看习题详情和答案>>