摘要:7.在等比数列{an}中.已知对任意正整数n.满足a1+a2+-+an=2n-1,则= ( ) A.(2n-1)2 B.(2n-1)2 C.4n-1 D.(4n-1)
网址:http://m.1010jiajiao.com/timu3_id_505908[举报]
在数列{an}中,已知a1=1,Sn是数列{an}的前n项和,且对任意正整数n,Sn+1=4an+2.
(I)令bn=an+1-2an(n=1,2,…),证明{bn}是等比数列,并求{bn}的通项公式;
(II)令f(x)=xln(1+x)-a(x+1),为数列{
}的前n项和,求
Tn.
查看习题详情和答案>>
(I)令bn=an+1-2an(n=1,2,…),证明{bn}是等比数列,并求{bn}的通项公式;
(II)令f(x)=xln(1+x)-a(x+1),为数列{
| 1 |
| log2cn+2•log2cn+1 |
| lim |
| n→∞ |
在数列{an}中,已知a1=1,Sn是数列{an}的前n项和,且对任意正整数n,Sn+1=4an+2.
(I)令bn=an+1-2an(n=1,2,…),证明{bn}是等比数列,并求{bn}的通项公式;
(II)令f(x)=xln(1+x)-a(x+1),为数列
.
查看习题详情和答案>>
在数列{an}中,已知a1=1,Sn是数列{an}的前n项和,且对任意正整数n,Sn+1=4an+2.
(I)令bn=an+1-2an(n=1,2,…),证明{bn}是等比数列,并求{bn}的通项公式;
(II)令f(x)=xln(1+x)-a(x+1),为数列
.
查看习题详情和答案>>
(I)令bn=an+1-2an(n=1,2,…),证明{bn}是等比数列,并求{bn}的通项公式;
(II)令f(x)=xln(1+x)-a(x+1),为数列
查看习题详情和答案>>
设等比数列{an}的前n项和为Sn,已知
.
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.
查看习题详情和答案>>
设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*).
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.
查看习题详情和答案>>
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.