摘要:已知数列{}满足前n项和为=n+1,数列{}满足=,且前n项和为.设= ⑴求数列{}的通项公式;⑵判断数列{}的增减性; ⑶当n≥2时< -恒成立,求a的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_503311[举报]
已知数列{bn}的前n项和为Sn,b1=1且点(n,Sn+n+2)在函数f(x)=log2x-1的反函数y=f-1(x)的图象上.若数列{an}满足a1=1,an=bn(
+
+…+
) (n≥2,n∈N*).
(Ⅰ)求bn;
(Ⅱ)求证:
=
(n≥2,n∈N*);
(Ⅲ)求证:(1+
)(1+
)(1+
)•…•(1+
)<
.
查看习题详情和答案>>
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(Ⅰ)求bn;
(Ⅱ)求证:
| an+1 |
| an+1 |
| bn |
| bn+1 |
(Ⅲ)求证:(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 10 |
| 3 |
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*)
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求满足不等式
≥128的最小n值.
查看习题详情和答案>>
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求满足不等式
| Tn-2 | 2n-1 |