摘要:56.恒成立不等式问题通常解决的方法:借助相应函数的单调性求解.其主要技巧有数形结合法.分离变量法.主元法.
网址:http://m.1010jiajiao.com/timu3_id_503181[举报]
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
查看习题详情和答案>>
已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)定理:函数g(x)=ax+
(a、b是正常数)在区间(0,
)上为减函数,在区间(
,+∞)上为增函数.参考该定理,解决下面问题:是否存在实数m同时满足以下两个条件:①不等式f(x)-
>0恒成立;②方程f(x)-m=0有解.若存在,试求出实数m的取值范围,若不存在,请说明理由.
查看习题详情和答案>>
(1)求k的值;
(2)定理:函数g(x)=ax+
| b |
| x |
|
|
| m |
| 2 |
(1)证明下列命题:
已知函数f(x)=kx+p及实数m,n(m<n),若f(m)>0,f(n)>0,则对于一切实数x∈(m,n)都有f(x)>0.
(2)利用(1)的结论解决下列各问题:
①若对于-6≤x≤4,不等式2x+20>k2x+16k恒成立,求实数k的取值范围.
②a,b,c∈R,且|a|<1,|b|<1,|c|<1,求证:ab+bc+ca>-1.
查看习题详情和答案>>
已知函数f(x)=kx+p及实数m,n(m<n),若f(m)>0,f(n)>0,则对于一切实数x∈(m,n)都有f(x)>0.
(2)利用(1)的结论解决下列各问题:
①若对于-6≤x≤4,不等式2x+20>k2x+16k恒成立,求实数k的取值范围.
②a,b,c∈R,且|a|<1,|b|<1,|c|<1,求证:ab+bc+ca>-1.