摘要: 由原点O向三次曲线y=x3-3ax2+b x (a≠0)引切线,切于不同于点O的点P1(x1,y1),再由P1引此曲线的切线,切于不同于P1的点P2(x2,y2),如此继续地作下去,--,得到点列{ P n(x n , y n)},试回答下列问题: (Ⅰ)求x1; (Ⅱ)求x n与x n+1的关系; (Ⅲ)若a>0,求证:当n为正偶数时, x n<a;当n为正奇数时, x n>a. 答案及评分意见
网址:http://m.1010jiajiao.com/timu3_id_500984[举报]
由原点O向三次曲线y=x3-3ax2(a≠0)引切线,切点为P1(x1,y1)(O,P1两点不重合),再由P1引此曲线的切线,切于点P2(x2,y2)(P1,P2不重合),如此继续下去,得到点列:{Pn(xn,yn)}
(1)求x1;
(2)求xn与xn+1满足的关系式;
(3)若a>0,试判断xn与a的大小关系,并说明理由 查看习题详情和答案>>
(1)求x1;
(2)求xn与xn+1满足的关系式;
(3)若a>0,试判断xn与a的大小关系,并说明理由 查看习题详情和答案>>
由原点O向三次曲线y=x3-3ax2+bx(a≠0)引切线,切于不同于点O的点P1(x1,y1),再由P1引此曲线的切线,切于不同于P1的点P2(x2,y2),如此继续地作下去,…,得到点列{Pn(xn,yn)},试回答下列问题:
(1)求x1;
(2)求xn与xn+1的关系;
(3)若a>0,求证:当n为正偶数时,xn<a;当n为正奇数时,xn>a.
查看习题详情和答案>>
(1)求x1;
(2)求xn与xn+1的关系;
(3)若a>0,求证:当n为正偶数时,xn<a;当n为正奇数时,xn>a.
由原点O向三次曲线y=x3-3x2引切线,切于异于原点的点P1(x1,y1),再由P1引此曲线的切线,切于异于点P1的点P2(x2,y2),如此继续下去,得到点列{Pn(xn,yn)}.
(1)求x1;
(2)求xn与xn+1满足的关系式;
(3)求数列{xn}的通项公式.
查看习题详情和答案>>