题目内容

由原点O向三次曲线y=x3-3x2引切线,切于异于原点的点P1(x1,y1),再由P1引此曲线的切线,切于异于点P1的点P2(x2,y2),如此继续下去,得到点列{Pn(xn,yn)}.

(1)求x1

(2)求xnxn+1满足的关系式;

(3)求数列{xn}的通项公式.

解:(1)x1=.                                                                                                     ?

(2)过曲线上的点Pn+1(xn+1,yn+1)的切线方程为?

y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1),?

 

而此切线过点Pn(xn,yn),则有?

xn3-3xn2-(xn+13-3xn+12)=(3xn+12-6xn+1)(xn-xn+1)xn+2xn+1=3.                                              ?

(3)由xn+2xn+1=3xn+1-1=-(xn-1)xn=1-(-)n.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网