网址:http://m.1010jiajiao.com/timu3_id_500142[举报]
如图,
是△
的重心,
、
分别是边
、
上的动点,且
、
、
三点共线.
(1)设
,将
用
、
、
表示;
(2)设
,
,证明:
是定值;
(3)记△
与△
的面积分别为
、
.求
的取值范围.
(提示:![]()
![]()
【解析】第一问中利用(1)![]()
![]()
第二问中,由(1),得
;①
另一方面,∵
是△
的重心,
∴![]()
而
、
不共线,∴由①、②,得![]()
第三问中,![]()
由点
、
的定义知
,
,
且
时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:
,结合作差法得到。
解:(1)![]()
.
(2)一方面,由(1),得
;①
另一方面,∵
是△
的重心,
∴
. ②
而
、
不共线,∴由①、②,得
解之,得
,∴
(定值).
(3)
.
由点
、
的定义知
,
,
且
时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:
.(法一)由(2)知
,
∵
,∴
.
∵
,∴
.
∴
的取值范围![]()
查看习题详情和答案>>
学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为
,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为
,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数
的分布列和数学期望。
【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得![]()
第二问中
可能的取值为0,1,2,3
,
,
从而得到分布列和期望值
解:(I)由已知条件得
,即
,则
的值为
。
(Ⅱ)
可能的取值为0,1,2,3
,
,
的分布列为:(1分)
|
|
0 |
1 |
2 |
3 |
|
|
|
|
|
|
所以![]()
查看习题详情和答案>>
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r=
=
,
故所求圆的方程为:
+
=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圆的方程为:
+
=2
………………………12分
法二:由条件设所求圆的方程为:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圆的方程为:
+
=2
………………………12分
其它方法相应给分
查看习题详情和答案>>