摘要:22.已知数列{an}的前n项和为Sn.满足关系式(2+t)Sn+1-tSn=2t+4(t≠-2.t≠0.n=1.2.3.-) (1)当a1为何值时.数列{an}是等比数列, 的条件下.设数列{an}的公比为f(t).作数列{bn}使b1=1.bn=f(bn-1).求bn, 条件下.如果对一切n∈N+.不等式bn+bn+1<恒成立.求实数c的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_499622[举报]
已知数列{an}的前n项和为Sn,满足Sn=2an+n2-4n(n=1,2,3,…).
(Ⅰ)写出数列{an}的前三项a1,a2,a3;
(Ⅱ)求证:数列{an-2n+1}为等比数列;
(Ⅲ)求Sn. 查看习题详情和答案>>
(Ⅰ)写出数列{an}的前三项a1,a2,a3;
(Ⅱ)求证:数列{an-2n+1}为等比数列;
(Ⅲ)求Sn. 查看习题详情和答案>>
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),
(1)求数列{an}的通项公式an;
(2)若数列bn满足bn=log2(an+2),Tn为数列{
}的前n项和,求Tn
(3)(只理科作)接(2)中的Tn,求证:Tn≥
.
查看习题详情和答案>>
(1)求数列{an}的通项公式an;
(2)若数列bn满足bn=log2(an+2),Tn为数列{
| bn |
| an+2 |
(3)(只理科作)接(2)中的Tn,求证:Tn≥
| 1 |
| 2 |