摘要: 设 M(互相垂直的弦MP.MQ.求证:PQ恒过定点M'( (2)直线点M.使得△MPQ为以PQ为斜边的直角三角形?
网址:http://m.1010jiajiao.com/timu3_id_499327[举报]
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
1 1 |
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
| 2 |
| π |
| 4 |
|
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.
设动直线x=m与函数f(x)=x3,g(x)=lnx的图象分别交于点M、N,则|MN|的最小值为( )
A、
| ||
B、
| ||
C、
| ||
| D、ln3-1 |