摘要:20.已知每个网格中小正方形的边长都是1.图1 中的阴影图案是由三段以格点为圆心.半径分别为1和2的圆弧围成. (1)填空:图1中阴影部分的面积是 (结果保留), (2)请你在图2中以图1为基本图案.借助轴对称.平移或旋转设计 一个完整的花边图案(要求至少含有两种图形变换).
网址:http://m.1010jiajiao.com/timu3_id_489295[举报]
“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是
,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为
,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
查看习题详情和答案>>
“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是
,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为
,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
查看习题详情和答案>>
例:在△ABC中,AB、BC、AC三边长分别是
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为
“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是
,求这个三角形的面积.小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即三角形的顶点都在小正方形的顶点处),
如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为
,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
例:在△ABC中,AB、BC、AC三边长分别是
如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为
例:在△ABC中,AB、BC、AC三边长分别是
| 5 |
| 10 |
| 13 |
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:S△ABC=3×3-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 7 |
| 2 |
思维拓展:已知△ABC的边长分别为
| 5a |
| 2a |
| 17a |