网址:http://m.1010jiajiao.com/timu3_id_487617[举报]
(本小题满分1 0分)
如图,已知线段AB∥CD,AD与B C相交于点K,E是线段AD上一动点。![]()
【小题1】(1)若BK=
KC,求
的值;
【小题2】(2)连接BE,若BE平分∠ABC,则当AE=
AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=
AD (n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
(本小题满分14分)
已知:如图,抛物线
与y轴交于点C(0,
), 与x轴交于点A、 B,点A的坐标为(2,0).
![]()
(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线
与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(
,0).问:是否存在这样的直线
,使得△OMF是等腰三角形?若存 在,请求出点Q的坐标;若不存在,请说明理由.
查看习题详情和答案>>
(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,
), 与x轴交于点A、 B,点A的坐标为(2,0).
![]()
(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(
,0).问:是否存在这样的直线
,使得△OMF是等腰三角形?若存 在,请求出点Q的坐标;若不存在,请说明理由.
查看习题详情和答案>>
(本小题满分14分)
如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3)。设抛物线的顶点为D,求解下列问题:
1.(1)求抛物线的解析式和D点的坐标;
2.(2)过点D作DF∥
轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;
3.(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由。
查看习题详情和答案>>
(本小题满分12分)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
1.(1)填空:菱形ABCD的边长是 ▲ 、面积是
▲ 、 高BE的长是 ▲ ;
2.(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t = 4 秒时的情形,并求出k的值.
查看习题详情和答案>>